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Introduction

This report describes progress made in during the first year of study on the project
entitled “Model & Expansion Based Methods of Detection of Small Masses in
Radiographs of Dense Breasts.” In general our goal is to detect masses in dense
mammograms having a diameter less than 1 cm. The basic “idea” of this IDEA catagory
award is to detect subtle masses by tuning the central frequency and width of a basis
function. By modeling the shape of a mass through this flexibility (i.e., changing the
shape of the “bump™) we hope to better detect small and subtle masses in dense breasts
and improve the chances of early detection through screening mammography.

This fist annual report addresses progress made towards accomplishing the goals
described in Tasks 1a and 1b, “Feasibility assessment and design of model based
method.” In addition we have begun the initial steps described in Task 2b, “Detector
analysis and implementation.”

Body

In our proposal we made the conjecture that existing methods of analysis computed
(efficiently) on dyadic scales were not sufficient for the detection of masses: a lesion may
be too blurry at one scale, and too precise at the next finer dyadic scale. Thus, in the first
part of this study, we attempt to answer the question “Is it sufficient to work with dyadic
scales, or is there an absolute need to compute coefficients between the scales?”

In order to provide a more portable platform for development and not “reinvent the
wheel” when available, we choose to use or modify existing libraries and programs
available within the mathematical community. An ancillary benefit to this approach is
that when this code is made available to the research community (at the end of the
project) it will be far more easy to use having been built upon a popular commercially
available and supported programming environments.

Thus, we first evaluated analysis tools in our laboratory that provided the closest
functionality we anticipated: (a) Matlab software, with the Wavelab extensions, (b) the
LastWave software written in C++. Major analysis tools described in Mallat’s book [1]
“A wavelet tour of signal processing algorithms” have been implemented in Matlab.
However many are not. For example we discovered that there did not exist a program to
carry out a CWT_2D analysis in either Matlab or LastWave software packages. Thus we
began by rewriting in Matlab several existing LastWave algorithms, such as the Discrete
Wavelet Transform in two dimensions without downsampling, using the “Algorithme a
Trous” [1,2].




Methodology

To begin, we compared in one dimension the CWT and the DWT for different data sets:
phantom masses, and 1-D intensity profiles of real digital mammograms. Then we
evaluated the shape of the “Mexican hat” for suitability in a matched filtering detection
paradigm. In the next section, we introduce the notion of “voices” which allow us to
compute representations in between octaves.

Voices, octaves and notation

Beyond the (Discrete Wavelet Transform) DWT which computes only at dyadic scales
corresponding to octaves, it is possible to decompose at a finer granularity and compute
scales between these octaves: these are called voices [1]. Simply, a voice constitutes a
subdivision of an octave.

If we consider a wavelet mother i, the corresponding wavelets are:

m
Wnn(X)=ay>w(a;"x—nb,) where | ay is the dilatation parameter,
by is the translation parameter,
(mn)eZ’.

In the dyadic case, a, =2 andb, =1:

V/m,n (x) = 2_5 V/(z—m b n)

Decomposing N voices per octave means creating N functions l//,’,/, m and looking at the

frame {l//,',/,,n;(m,n) eZ’,v=1,..,N}.

Analyzing with N voices means finding N different frequency levels which correspond to
the N different central frequency localizations of +',...,40" , all translated by the same

translation step (Figure 1(b)). Such a lattice can be viewed as the superposition of N
different lattices of the type shown in Figure 1(a), “stretched” by different amounts in the

frequency direction. One possible choice for " is

v-1 v-1

p'(x)=2 V(2 Vx),

If

¥(&)| (which we assume to be even) peaks about +a,, then |y9’ I will be concentrated
1 R
around +2 ¥ @, (in the same way as in the dyadic case; if |¢| has two peaks in frequency

at %6,

%Zm,n €3 )l then peaks at +2" &, which become the two localized centers of ym,n).
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Figure 1: The time-frequency lattice comparing traditional dyadic time-frequency
partitions (red dots) and tiling of the time-frequency plane via voices (red and black dots).




To designate the 7™ voice of the i™ octave, we will use the following notation:
e Aijj for the approximation coefficients,
e Di,j for the detail coefficients.

The equation computing the scale when given an ‘octave’, ‘current_voice’ and ‘number
of voices’ is:
current _voice

octavet+———mQ——————
number_vozces

scale="?2

Moreover, we adopt the following convention: the first octave (octave number zero)
1
corresponds to the width between scales 142"~ and 2. The dyadic scale of an
octave is the last voice within this octave (scale = 2°****!). On the lattice shown in
Figure 2, we consider a signal of 512 points (2°). This means 9 octaves (octave 0 to
1
octave 8). Thus the coarsest scale is 512 points and the finest consists of 1+ 2™ points.

For example, when we display the second voice of the fourth octave (four voices per
2

- » 4+_ . -
octave being computed), we obtain the scale 2 *, or we effectively compute coefficients
at scale 23 (as shown in Figure 2).
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Figure 2: Linking the notions of scale, octave and voice: The time-frequency lattice
for a scheme with four voices per octave, including the scale axis.
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Experiments in one-dimension

In this initial phase we carried out a systematic study using 1-D algorithms of the
continuous and the discrete wavelet transform. We modified LastWave utilities
(package wtransld) to compute a DWT or CWT in 1D, and display the plot of the
coefficients.

For the CWT, different types of expansions are possible including the first, second, third
and fourth derivative of a gaussian function and the Morlet complex wavelet. We
concentrated on the first and the second derivative of a gaussian function, applied on
signals simulating three masses of distinct sizes using the same kind of noise (Figure 3)
and on line profiles extracted from mammograms with real masses.

criginal ld-signal with 3 masses

1
0.8
0.6
0.4
0.2 small large medium
=77 ]
0 100 200 300 400 500
noisy signal (gaussian noise, var=0.09)
1.5
1
0.5
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.260. — .360. — .400. — '560

o
=
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o

Figure 3: Phantom signal with an addition of a white gaussian noise of variance 0.1.

The program computing the continuous expansions was designed with the input
parameters describing below:

cwtd <aMin> <nOct> <nVoice> <wavelet>

Parameters: aMin is the first scale applied to the transform,
nOct the number of octaves,
nVoice the number of voices per octave,
wavelet part of the gaussian wavelets family (‘g1, g2, g3, g4°).

The results displayed are with and without thresholding of the coefficients. The program
corresponding to the thresholding operator was

wthresh <threshold> {-e <alpha>],




-“

where the option ‘—¢” is used to change the threshold value along scales. For example

alpha*(o-1+ 4

. . . —)
the threshold at octave ‘0’ and voice ‘v’ is specified by threshold *2 mvoice:

In addition, we modified an existing program in Wavelab for computing DWT in one
dimension which does not downsample along scales. The program is called FWT _ATROU
and is based on the “atrou “ algorithm, using a cubic spline basis. The results for both
simulated profiles and real masses are presented in the next Section.

The CWT in two dimensions

Expansions computed from the CWT are easy to understand :

(1) Compute the fast Fourier transform of the image.

(2) For each voice and for each octave, (a) the user enters an expression of the
window (Fourier transform of the wavelet). The Fourier transform of the wavelet
is calculated on a support depending on scale. (b) Multiply both Fourier
transforms, (c) Computes the inverse Fourier transform.

Due to it’s symmetric isotropic shape, we decided to investigate the Mexican Hat as a
model for an expansion basis, which is the second derivative of a gaussian function. Thus
we calculated the expression, in two dimensions, of the Fourier transform of the Mexican
Hat.

4 2

t
Gaussian function : f(f)=e 2.

Fourier transform of f{t) : f (w)= [m fO*e ™ dt = 27e 2
.

4 2

v
Second derivative of a Gaussian function (Mexican Hat) : f,(¢) = (#’ —1)*e 2
< . . ' o
Fourier transform of the Mexican hat (in 1d) : f,(@)= L f,(O*e ™ dt =0’ \2me *

.

In two dimensions, we have :

4yt

)*e_ 2

,

2 2
Mexican Hat : f(x,y)=(1- ¥y

2

JCz+y2

2, .2 _
{ {@o=fla-222y% 7 ey
FT:

2 2
@y +ay

\ ——me ? (0 +@,)




Therefore, the algorithm can be described in the following steps:

Compute the 2 dimensional Fourier transform of the image,

Knowing the expression of the Fourier transform of the Mexican Hat in 2d and we
calculate this function at discrete points (@,, @, ) depending on the scale,
Multiply these two matrices,

Display the real part of the inverse Fourier transform of the result.

The Matlab program file which accomplishes this is provided in Appendix 1.

Results

Model based methods using 1D signals

We extracted from the profile of a 2D mass, samples of 1D signals. Plots of two intensity
profiles from the real mammogram shown in Figure 4 are displayed in Figure 5 below.

Figure 4: Real mass from mammography (South Florida University database)

The white lines show locations of intensity profiles displayed in Figure 5.




section of a mammogramm without mass

3000

2800

2600 T i /MM{WMMW W \WMA/‘W%MJ\ /\w ]

2400

2200 . . . . .
0 100 200 300 400 500 600

section of a mammogramm with a mass
3200 T T

| | M
3000 | Jﬂﬂwgwwwfpw IDXNAN$WKﬁW
' o

2600 _VWWJQVWVWV
100 200 300 400 500 600

2400
0

Figure 5: Intensity profiles through the mammogram, (y=100 and y=250).

As shown in Figure 8, we added gaussian noise on phantom masses so that the 1D signal
had the same shape as a real mass. We worked with two different variance values: v=0.09
(shown in Figure 3) and v=0.36.

We present below some interesting plots obtained using: (a) noises with different
variances, (b) a continuous and a discrete wavelet transform (with several wavelets for
each), (c) with and without thresholding.

0.8

-10 -8 - -4 -2 0 2 4 6 8 10 20 -8 L] -4 2 0 2 4 6 8 10

Figure 6. (Left) ‘gl’ wavelet basis, first derivative of a guassian function.
Figure 7. (Right) ‘g2 < wavelet basis, second derivative of a guassian function.

We computed the expansion with two types of bases: ‘g1’ and ‘g2’, meaning first and
second derivative of a gaussian function shown in Figures 6 and 7 respectively.

Results for the continuous case are shown first; we display only the detail coefficients.




noisy signal (white gaussian ncise, variance 0.4)
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Figure 6: CWT using basis ‘g1’ without thresholding.

original signal (white gaussian noise, wvariance 0.4)
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Figure 7: CWT using wavelet ‘g2’ without thresholding.
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noisy signal (white gaussian neise, variance 0.4)
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Figure 8: CWT using wavelet ‘g1’ with thresholding.
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Figure 9: CWT using wavelet ‘g2’ with thresholding.
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We then processed a phantom signal that mimicked the profile of a real mass in a
mammogram. What is interesting here is the fact that for a mass of a narrow length (the
first one on our case), the ‘g2’ wavelet does not exactly detect the end of the wavelet
(there is a delay), which does not appear when we compute the transform using the ‘gl’
wavelet. Nevertheless, we decided to perform a continuous transform in 2 dimensions
with a Mexican hat wavelet, which behaves as a second derivative of a gaussian function.

It is important to remark that there does not exist a 1D DWT program within the
community of existing sofiware including public, web, and commercial sources which
does not down-sample along scales. As a result, the following plots exhibited aliasing
artifacts and underestimate the performance of this expansion.

We computed the transform with three different multiscale expansions: ‘D1’ (Daubechies

1, one vanishing moment), ‘spl1’ (a linear spline) and ‘spl3’ (a cubic spline). Below we
display the thresholded results from a linear spline expansion:

noisy signal {white gaussian, variance 0.4)

2
1
0
-1
I e e e e e e e . . A s By e B |
g 100 200 300 400 500
1 gwt with filter ‘spll’ scale is 8, threshold 0.8
0.9
0.4
-0.1
-0.6
-1.1
Tl T L) T | T T T T l T T T T | T T T T | T T T T |
0 100 200 300 400 500
L original signal
0.8
0.6
0.4
0.2
0 1T L T o 1
a 100 200 300 400 500

Figure 10: DWT using wavelet ‘spll’ with thresholding and downsampling.
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Figure 11: DWT using wavelet ‘spll,” both the approximation and detail signal
shown, with downsampling.

We observed that the results were superior compared to Figure 12 with respect to the
detail components of the signal. In fact, the variance of the white gaussian noise was less
significant (0.1 compared to 0.4). Thus Figures 12 and 13 show why downsampling
along scales is not desirable for our detection application in mammography. Processing
the 1D section of a real mass with downsampled representations was a failure, since it is
was almost impossible to identify the edges of the mass at any detailed scale. Below,
Figures 15 and 16 show results of the DWT expansion computed without downsampling
in 1D working (under the Wavelab environment). These results motivated us to write a
Wavelab program DWT_2D.m which computed the fast discrete dyadic wavelet
transform in two dimensions without downsampling, using the ‘algorithme a trous’ [1].
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Expansion using a “Mexican Hat” basis

Next, still dealing with 1D signals we processed signals still composed of masses with
white gaussian noise, but of variance 0.1. The basis for the expansion was a “Mexican
Hat” wavelet comparable to the ‘g2’ wavelet.

Figure 12: “Mexican Hat,” a second
derivative of a gaussian function.

08
0 8 €6 4 2 0 2 4 6 B8

original signal
4 | | | | I
21 .
ol MNW h NV W Ve NTRTEE
OM W\»MW WVWWMM ity %\W\«WW i
2 700 200 300 200 500 600
detail at scale 5
0.05 I 1 | i I
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Figure 13: CWT using a ‘Mexican Hat’ wavelet at a given octave. Displayed are the
first three voices of this octave (the noise added is of variance 0.1).

14




We complete this section on 1D models with the DWT as implemented in the
Wavelab toolbox which does not carry out downsampling along scales. Thus, these
results are more relevant than previous results shown earlier. Below in Figure 16, we
show both the approximation and detail signals at two different scales (8 and 16).

phantom with white gaussian noise (var=0.1)
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phantom with white gaussian noise (var=0.1)
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Figure 14: Expansion of a phantom model containing three masses of different sizes
using a DWT without dowmsampling with gaussian noise (variance = (.1).

Modeling of lobular masses with the CWT_2D

We designed a simple phantom of a lobular mass with the addition of white gaussian
noise (variance of 4) as shown in Figure 17. Our Wavelab program cwt_2d.m computed
the values of the transform coefficients. When using such an expansion, we obtain
positive values in the center of the mass, then negative values around it. This raised an
issue when we later calculate the correlation between the coefficients and the original
region of interest containing the model of the mass (without noise). We investigated two
ways to deal with this:

o keep the positive values only,

e add to each coefficient the value of the smallest: thus biasing the coefficients so
they are positive valued.
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For completeness, we display both possibilities in Figures 18 and 19. Thereafter, we will
show only the biased representations. The signal-to-noise ratio (SNR) depending on the
variance of the noise and the size of the mass is also displayed for comparison.

Figure 15: Noisy mass, white gaussian noise, variance = 4.
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Figure 16: CWT_2D at octaves 3 to 5, four voices per octave.
No threshold applied, positive values displayed.
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scale 19 scale 22.6 scale 26.9 scale 32
4 | o
scale 38.1 scale 45.3 scale 53.8 scale 64
5 T
\ 4
octaves
Figure 17: CWT_2D at octaves 3 to 5, four voices per octave. No thresholding.

Biased representation of coefficients.

Below, we display the coefficients of the expansion with a threshold applied.

scale 11.3 scale 13.5 scale 16

scale 19 scale 22.6 scale 26.9 scale 32

o

scale 38.1 scale 45.3 scale 53.8 scale 64

Figure 18: CWT_2D at octaves 3 to 5, four voices per octave.
Coefficients were first biased and threshold (T=0.00165) applied.
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For purposes of validation of detection (ground truth), the original image is shown in
Figure 19, without noise.

Figure 19: Original simulated phantom of lobular mass.

Next we performed the algorithm on an image containing a real
malignant mass, as shown in Figure 4. Below we show the ‘raw’

results in Figure 20, then corresponding alternate representations are
displayed in Figure 21.

1 2 3 4 voices
| | ] |
! | 1 | >
scale 19 scale 22.6 scale 26.9 scale 32
4 1
scale 38.1 scale 45.3 scale 53.8 scale 64
5 4
scale 76.1 scale 90.5 scale 108 scale 128
6 T
v Figure 20: CWT_2D at octaves 4 to 6, four voices per octave.
octaves No thresholding was applied on biased coefficients.
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scale 22.6 scale 26.9 scale 32

scale 38.1 scale 45.3 scale 53.8 scale 64

scale 76.1 scale 90.5 scale 108 scale 128

Figure 21: CWT _2D at octaves 4, Sand 6, four voices per octave. Coefficients are
biased and thresholded independently at each scale (10 for scale 38 to 20 for scale
128).

The significance of the result shown in Figure 21 is that at least one of these
representations exhibit a reasonable approximation of the actual shape of the mass. Thus,
in terms of the parameter estimation problem (Task 1b in the Statement of Work) we are
satisfied in that it appears at least feasible that there is a hope of detecting a shape that
best matches the mass among the set of expanded representations. As described in the
next Section, we then proceeded to develop a strategy for detection.
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Discussion

We next focused on Task 2b, which includes finding the most suitable scale to detect
masses. Motivated by the results obtained for one-dimension expansions, we then
implemented a 2D continuous wavelet transform. This algorithm is a new program
which we developed for this project and runs under the Wavelab environment.

Our CWT 2D program processed phantom masses, as well as real masses. The first way
to identify the best scale is to simply display the maxima of the coefficients along scales,
providing the magnitude of the maxima at each scale. We also investigated an alternative
approach, where we plot the correlation between the original mass and the coefficients of
the CWT at each scale.

We expected to find different ‘optimal scales’ according to the size of the mass. Thus we
performed our algorithm on three different size masses, as shown in Figure 22 below.

small mass medium mass large mass

noisy small mass noisy medium mass noisy large mass

'

Figure 22: Simulated masses of different size for detection by identification of best scale.
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Below a table giving the SNR depending on the size of the mass, and the variance
of the white gaussian noise added is summarized.

1.53

Variance 4 3.92

" Variance I 172 7.52 9.99

In the first place, we perform for each mass the cwt2d on the 9 possible octaves (3 voices
per octave). Then for each octave and each scale we plot the maxima of the coefficients
of the wavelet decomposition (Fig 25).

maxima values

—— small mass
—— medium mass
—— large mass

0.10 I~

0.02

4 8 16 32 64 128 256 scale

Figure 23: Evolution of the maxima coefficients for the cwt2d expansion across scales.

Position of the maxima of the decomposition: (1) Small mass: scale 40, (2) Medium
mass: scale 81, (3) Large mass: scale 128.

Nexrt we performed the cwt2d on the same number of octaves and voices. For each scale

we calculated the correlation between the original image (without noise) and the cwtd2
decomposition with the formula
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2000

500

M-1N-1

fog=2.>.f (mn)g(mn),

m=0 n=0

where £ is the original function (M points) and g contains the coefficients of the
CWT (N points).

. —— small mass
correlation values —— mediummass |

\
—— large mass / |

4 8 16 32 64 128 256 scale

the expansion.

Figure 24: Correlation between the original image and the values of biased coefficients of

Large mass: scale 161.

Maxima of the correlation: (1) Small mass: scale 64, (2) Medium mass: scale 102, (3)

The most suitable scale using the method of the maxima is roughly the same as the
correlation (the difference is only of one ‘voice’). When we computed the algorithm with
a greater number of voices per octave, we still observed a slight difference between each

of the mass.

method. Nevertheless, this experiment showed that the best scale depends on the size

Next, we show a visualization of the coefficients which suggested how well the ‘voices’

described a given size mass over a range of scales. These results are shown graphically
for each of the three sizes of masses in Figures 25, 26 and 27 below.
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scale 20.2 scale 25.4 " scale 32

scale 40.3 scale 50.8 scale 64

scale 80.6 scale 102 scale 128

scale 161 scale 203 scale 256

Figure 25: CWT_2D for the small mass at octaves 4 to7, three voices per octave,

biased values of coefficients.

scale 20.2 scale 25.4 scale 32

e

scale 40.3 scale 50.8

scale 80.6 scale 102 scale 128

scale 256

scale 161 scale 203

Figure 26: CWT_2D for the medium mass at octaves 4 to 77, three voices per octave.
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scale 20.2 scale 25.4 scale 32

scale 50.8

scale 80.6 scale 102 scale 128

scale 161 scale 203

Figure 27: CWT_2D for the large mass at octaves 4 to 7, three voices per octave.

We next carried out the same processing on the real mass (Figure 4) to also find the
best scale. Figure 28 shows the maxima, and Figure 29 displays the correlation result.

A .
maxima values N
w | /

" T /

T | | l | | »>

4 8 16 32 64 128 256 scale

Figure 28: Evolution of the maxima of the CWT across scales (real mass). Max located at scale161.
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correlation values /

6
1.10 e \
’—T%! —
4 8 16 32 64128 256 scale

Figure 29: Correlation between the original image and the biased values of the CWT2D (real mass)
Max identified at scale 161.

Thus we observed that the best scale to detect the real mass was the same for both
methods (maxima and correlation).

Next, a real mass and it’s associated binary mask, are displayed in Figure 30. We also
plot the computed coefficients shown in Figure 31.

Figure 30: Real mass and phantom mask for detection by correlation.
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scale 20.2 scale 25.4 scale 32

scale 40.3 scale 50.8

i m
scale 80.6

scale 102 scale 128

scale 161 scale 203

Figure 31: CWT_2D at octaves 1 to 5, five voices per octave.

Comment: According to these preliminary results, the correlation and the maxima do not
give perhaps the best result for detection. Most likely, observers would not choose the
scale identified as best (e.g. in our judgment, scale 40 for the medium mass appeared
best, which was less blurry than scale 102 which was selected by these unsophisticated
methods).

Our next experiment was to see if the variance of the noise changed these results. We
previously considered a very noisy signal (variance 4) which does not capture the range
of possible noise conditions. Thus, for the three different sizes of masses, displayed in
Figure 34 the maxima of the coefficients, the correlation, Figure 35 for three cases were
processed:

e White gaussian noise of variance 4 added to the original phantom mass,

e White gaussian noise of variance 1,
e No noise at all (phantom mass only).

26




maximi values

90 —T| small mass, no noise
—— noise of var 1

— - noise of var 4 N
--- medium mass, no noise /
—— noise of var 1 !/ \
— - noise of var 4 |
--- large mass, no noise J

— noise of var 1 ) \
— - noise of var 4 \

20 T

4 8 16 32 64 128 256 scale

Figure 32: Evolution of the maxima of the cwt2d across scales, for three masses of different size and
under different noise conditions.

correlation values
A

---- small mass, no noise
—— noise of var 1

— - noise of var 4

2000 - --- medium mass, no noise
—— noise of var 1

— - noise of var 4

---- large mass, no noise
—— noise of var 1

— - noise of var 4

500

4 8 16 32 64 128 256 scale

Figure 33: Correlation between the original image and the biased values of the CWT2D
decomposition for three masses of different size under different noise conditions.

27




It appeared clearly that both methods were invariant to the amount of noise added to the
phantom mass. In order to test for robustness in dealing with less symmetric masses, we
then created a phantom mass with less smooth edges, as shown below in Figure 34.

(a) Original image. (b) Noisy image (gaussian noise,
variance 1).

Figure 34: An asymmetric mass model, with oblique edges.

We display below in Figure 37 the values of the coefficients computed from expansion.

1 2 3 voices
| | ]
| | | >
scale 10.1 scale 12.7 scale 16
3 4
4 1
scale 50.8
5 1
scale 80.6 scale 102 scale 128
6 T
octaves

Figure 35: CWT_2D at octaves 3 to 6, three voices per octave.
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We then computed plots for the maxima (Figure 36) and the correlation (Figure 39). We
observed that the results were quite similar to the previous study of the three masses.

maxima values
0.08 —
0.02 T
\/—_/ \
| } } } } } } K —p
4 8 16 32 64128 256 scale
Figure 36: Evolution of the maxima of the CWT across scales.
A correlation values
/
1000 1T~
200
} } } } | } | —>
4 8 16 32 64128 256 scale

Figure 37: Correlation between the original image and the biased values of the CWT2D.

However, these two methods (maxima of the values of the coefficients and correlation
between the original image and the values of the coefficients) give only a rough idea of
the best scale for detection. Since both methods provided the similar results, we decided
to proceed with our analysis using only the maxima method, due to its more efficient
representation and faster computation time.
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Key Research Accomplishments

a) During the first year of our study we first evaluated the existing tools in the
research community to compute overcomplete expansions of multiscale signals.
We modified under Matlab several existing LastWave algorithms, including the
Discrete Wavelet Transform in two dimensions without downsampling, using the
Algorithme a Trous algorithm.

b) We compared in one dimension the CWT and the DWT in order to show a proof
of concept concerning any advantage of pursuing refinement of scale. We
processed phantom masses, and 1D intensity profiles of real masses
mammograms to evaluate feasibility. In order to identify the best scale, we
evaluated the use of maxima of the coefficients and a correlated model using three
masses of different size.

Reportable Qutcomes

During the first year, no manuscript, patents, or supplemental grants were obtained as a
result of this study. We plan to have sufficient preliminary data to submit an abstract to
the RSNA 2001 and a paper to Medical Imaging (SPIE) before the end the year.

Conclusions

Our study of one dimension cases answered the question of weather of not dyadic scales
were sufficient to detect masses in a dense mammograms. We showed that reasonable
approximations of mass shapes could be obtained through overcomplete expansions of a
continuous wavelet transform that computed voices between the traditional dyadic scales.

We observed mathematical phantoms and real masses that a correlation method (between
a model of a mass and the values of the computed coefficients) gave approximately the
same results when compared to the maxima method (maximum of the coefficients at each
scale). This is interesting since the correlation is not computable on real images.
However, we realized that both methods provided as a “best scale” a much coarser scale
than we would visually expect.

The next phase of this project will focus on Tasks 2 and 3. We have recently developed a
simple scheme to detect masses using these representations. This method based on
geometric properties of segmented masses within each expansion has recently shown to
be remarkably stable. We will describe this approach and report on its evaluation in our
next report.
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Appendix I

Matlab files —

cwt2d cwt2d_thresh display cwt2d

ok

o0 oo 20

Usage

oo o o

Inputs

90 o

nvoice,n}=cwt2d(im, noct, nvoice)

cwt2d —-— 2D Continuous Wavelet Transform

[COEFS,nvoice,n]=cwt2d (im, noct,nvoice)

im image to perform the transform on
noct nunber of octaves wished (be careful, the first octave

processed is the coarsest!!)

oo oo

nvoice number of voices per octave wanted

Outputs
% COEFS matrix with the coefficients of the cwtid
% nvoice number of voices per octave for this decomposition
% n size of the input image
%
% Description
% performs the continuous wavelet transform in 2D
% the wavelet used is the Mexican Hat
% the cwt2d is performed between scale=2"{1l/nvoice) and
scale=2"noct.
% The octave 'i' corresponds to scales beetween 2" (i+l/nvoice) and
2" (1+1)
&

See Also

a2 o

el

e

<]

close all;
clear COEFS;

S=size (im);

n=5(1);

nl=s(2);

if n ~=nl
disp('Error
break

end

Jl = log2{(n);

J2 = ceil (J1);

if J1 ~= J2
disp('Error
break

end

display cwt2d, cwt2d_thresh

the matrix COEFS is ordered from high to low frequencies

image must be square!');

the size of the input image must be a power of two!');
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xi = [ (0: (n/2)) (((-n/2)+1):-1) ] .* (2*pi);

line=J1-1;
raw=nvoice-1;
scale=1;

imfft=fft2 (im) ;

for jo=l:noct
for jv=l:nvoice
gscale=scale* (2" (jv/nvoice));
omegal = xi./(gscale);
for i=1:n
window(:,1i)=-exp (-
((omegal(i))A2+omega1'.*omega1')/2).*((omegal(i))A2+omega1'.*omegal');
end
%renormalization
window=window. /gscale;
wfft=imfft.*window;
w=ifft2 (wfft);
image=-real (w) ;
image=image+abs (min (min (image)));
COEFS((line*n+1): (line+l)*n, (raw*n+l) : (raw+l) *n)=image;
raw=raw—1;
end
line=line-1;
scale=scale*2;
raw=nvoice-1;
end

% cwt2d thresh-- thresholds the coefficients of the cwt2d
decomposition

% Usage
% [COEFS_thresh]:cthd_thresh(COEFS,n,nvoice,octave,thresh,alpha)
% Inputs
% COEFS matrix with the coefficients of the decomposition output by
cwt2d
% n size of the processed image output by cwt2d
% nvoice number of voices of the decompeosition output by cwt2d
% octave octaves you want to threshold.
% remember that octave i correspond to scale 27 (i+(1/nvoice)) to
2" (1+1)
% thresh see formula below
& alpha see formula below
% Outputs
& COEFS thresh matrix with the thresholded coefficients of the cwt2d

Description
thresholds the coefficients of the cwt2d decomposition with an
adaptative threshold.

o

o2
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)

% at octave 'o' and voice 'v' the value of the threshold is
thresh*2” (alpha* (o-1+v/nvoice))

See Also
cwt2d, display cwt2d

o0 oo o

A2

noct=1length (octave);
for jo=1l:noct
for jv=l:nvoice
image=COEFS(((octave(1)+jo—1)*n+1):((octave(1)+jo)*n),((jv-
1)*n+1) : (jv*n));
threshold=thresh*2” (alpha* (octave (1) +jo-1-1+jv/nvoice));
image=(image>threshold) . *image;
COEFS_thresh(((octave(1)+jo—1)*n+1):((octave(1)+jo)*n),((jv—
1)*n+1): (jv*n))=1image;
end
end

display cwt2d{COEES,n,octave,nvoice)

% display cwt2d-- display of the 2D Continuous Wavelet Transform
computed with the cwt2d function

Usage
% display_cthd(COEFS,n,octave,nvoice)
% Inputs
& COEFS matrix with the coefficients of the decomposition output by
cwt2d or cwt2d thresh
n size of the processed image output by cwt2d
octave octaves you want to display.
to display octaves 0 to 3 type 0:3
remember that octave i correspond to scale 2" (it+{1l/nvoice)) to
27 (1+1)
nvoice number of voices of the decomposition output by cwt2d

o0 o oo

B

o

a0 oo

See Also
cwt2d, cwt2d thresh

o

oo

noct=length (octave);
k=1;

for jo=l:noct
for jv=l:nvoice
subplot (noct, nvoice, k)
image=COEFS(((octave(1)+jo—1)*n+1):((octave(1)+jo)*n),((jv—
1) *n+l) s (jv*n)};
imshow (image, [])
scale=2"(octave (1)-1+jo) *2~ (jv/nvoice);
title(['scale ',num2str(scale,3)]);
k=k+1;
end
end
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Appendix 2

Matlab files— dwt2d display dwt2d
Euiie 1, hozi zontal o 13, phas
% dwt2d-- Fast Dyadic Wavelet Transform (periodized, orthogonal) in 2

dimensions

% Usage
% [approx,vertical,horizontal,modulus, phase,n]=dwt2d (im, noct)
% Inputs
% im 2-d signal; size = 277 = n
B noct Coarsest scale of the decomposition is Z”noct
% Outputs
% approx an n times n matrix giving the coarsest approximation
coefficients of the decomposition.
% vertical an n*noct times n matrix giving the vertical details
coefficients at all dyadic scales.
S horizontal an n*noct times n matrix giving the horizontal
details coefficients at all dyadic scales.
% modulus an n*noct times n matrix giving the modulus.
Modulus=sqgrt (vertical.”2+horizontal.”2).
% phase an n*noct times n matrix giving the phase.
Phase=atan? (horizontal,vertical).

n size of the input image

o o2

o

all these matrix are ordered from high to low frequencies
we calculate the wavelet decomposition from finer to coarser
cales.

See Also
display dwtzd

oo an AR o U P

S=size (im);

n=S (1);

approx=im;

[lodyadf,dlodyadf,hidyadf, dhidyadf] = MakeATrouFilter('Spline’,3);

for d=1l:noct

%approximation coefficients
A=approx;
for i=1:n

raw=A(i, :);

for j=1:(2"(d-1)+2~(d-2))

raw=1shift (raw);

end

A(i, :)=iconv(lodyadf, raw);
end
A=A";
for i=1l:n

raw=A{i,:);
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o e

for j=1:(27(d-1)+2"(d-2))
raw=1lshift (raw);
end
A(i,:)=iconv(lodyadf, raw);
end
A=A";

$vertical details
V=approx;
for i=1:n
raw=V (i, :);
V{i,:)=iconv (hidyadf, raw);
for j=1:27(d-2)
p=V(i,:);
V{i,:)=lshift(p):
end
end

Zhorizontal details
H=approx';
for i=1:n
raw=H (i, :);
H(i, :)=iconv(hidyadf, raw);
for §=1:2"(d-2)
p=H(il:);
H(i,:)=1lshift(p):
end
end
H=H"';

approx=Aa;

vertical ((d-1)*n+1l:d*n, :)=V;
horizontal ((d-1)*n+1l:d*n, :)=H;

f = zeros(l,2*length(lodyadf)):;
£f(1:2:2*1length(lodyadf)-1) = lodyadf;
f2 = zeros(l,2*length(hidyadf)):;
£f2(1:2:2*1ength(hidyadf)-1) = hidyadf;

lodyadf = £;
hidyadf £2;

end

modulus=sqrt (vertical.”2+horizontal.”2);
phase=atan2 (horizontal,vertical);

)
o)
%

%

o

display dwt2d-- display of the Fast Dyadic Wavelet Transform
computed with the dwt2d function

Usage
display dwt2d(vertical,horizontal,modulus,phase,n,oct)
Inputs
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9 M x

o0

[Sle SR~ sl ]

o

0 @ ar P DN

S0 o0 o oo

3
£

e

vertical wvertical details coefficients output by dwt2d

horizontal horizontal details coefficients output by dwt2d
modulus modulus output by dwt2d
phase phase output by dwtZd
n size of the processed image output by dwt2d
oct octaves you want to display. Octave i corresponds to scale
i
to display the octaves 1 to 5 type 1:5
Description
To display the 2d Fast Dyadic Wavelet Transform
See Also
dwt2d
=1;
or i=l:length(oct)

tmp1=vertical((oct(l)—1+i—1)*n+1:(oct(l)—1+i)*n,:);
maxl=max (max (abs (tmpl)));
tmpl=(tmpl+maxl) /(2*maxl);
image ((i-1)*n+j:i*n+(3j-1),1l:n)=tmpl;
tmp2=horizontal((oct(l)—1+i—1)*n+1:(oct(l)—1+i)*n,:);
max2=max (max (abs (tmp2)));
tmp2=(tnp2+max2) / (2*max2) ;
image ( (i-1)*n+j:i*n+(j-1),n+5:2*n+4)=tmp2;
tmp3=modulus((oct(l)—1+i—1)*n+1:(oct(l)—1+i)*n,:);
max3=max (max (abs (tmp3)))
tmp3={tmp3) / (max3);
image ((i-1)*n+j:i*n+(j-1),2*n+9:3*n+8)=1-tmp3;
tmp4=phase((oct(l)—1+i—1)*n+1:(oct(l)—1+i)*n,:);
max4d=max (max (abs (tmp4)));
tmpd= (tmp4d+max4) / (2*max4) ;
image ( (i-1)*n+j:i*n+(j-1),3*n+13:4*n+12)=tmp4;
image ({(i*n)+j: (i*n)+j+4, :)=1;
J=3+5;

nd

image (:,n+l:n+4)=1;

i
i
i

o

op of

mage {:,2*n+5:2*n+8)=1;
mage (:,3*n+9:3*n+12)=1;
mshow (image, [1)

at each scale we normalise the vertical and horizontal details and
the phase as follows:
matrix=(matrix+max(abs (matrix)))/ (2*max(abs (matrix)))

to display the modulus we do : modulus=l-modulus/max{abs(modulus));
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